ЛО́ГІКА АДНО́СІН,
раздзел логікі, які вывучае ўласцівасці выказванняў пра адносіны паміж аб’ектамі рознай прыроды. Элементарныя выказванні пра адносіны — выказванні віду akb, што значыць «аб’ект a знаходзіцца ў адносінах k да аб’екта b» (напр., «a брат b», «a цяжэй, чым b»). Адпаведна колькасці аб’ектаў, звязаных пэўнымі адносінамі, адрозніваюць двухмесныя (бінарныя), трохмесныя (тэрнарныя) і ўвогуле n-месныя (n-арныя) адносіны. Асабліва важнае значэнне маюць бінарныя адносіны пры дапамозе якіх вызначаюць такія важныя паняцці логікі і матэматыкі, як «функцыя», «аперацыя». Уводзячы для бінарных адносін аперацыі аб’яднання (сумы), перасячэння (здабытку) і дапаўнення, атрымліваюць «алгебру адносін»; ролю адзінкі ў ёй выконваюць адносіны эквівалентнасці (роўнасці, тоеснасці). Уласцівасці адносін эквівалентнасці — рэфлексіўнасць (для ўсякага x правільна, што xkx, г. зн. кожны аб’ект заходзіцца ў дадзеных адносінах да самога сябе); сіметрычнасць (з xky вынікае ykx, транзітыўнасць (з xky і ykz вынікае xkz). У сучаснай матэм. логіцы адносіны выражаюцца праз мнагамесныя прэдыкаты [напр., «Брат (a, b)», «Больш (a, b)»], таму Л.а. распрацоўваецца як частка логікі прэдыкатаў.
В.В.Філіпава.
т. 9, с. 334
Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)